Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Как найти частное решение ДУ приближённо с помощью ряда?Продолжая изучать практические приложения теории рядов, рассмотрим ещё одну распространённую задачу, название которой вы видите в заголовке. И, чтобы не чувствовать себя газонокосилкой на протяжении урока, давайте сразу же разберёмся в сути задания. Три вопроса и три ответа: Что нужно найти? Частное решение дифференциального уравнения. Намёк между строк шепчет, что к данному моменту желательно хотя бы понимать, что такое дифференциальное уравнение и что такое его решение. КАК по условию требуется это решение? Приближённо – с помощью ряда. И третий закономерный вопрос: почему приближённо? Этот вопрос я уже освещал на уроке Методы Эйлера и Рунге-Кутты, однако повторение не помешает. Будучи сторонником конкретики, вернусь к простейшему дифференциальному уравнению . В ходе первой лекции по диффурам мы нашли его общее решение (множество экспонент) и частное решение , соответствующее начальному условию . График функции – это самая обычная линия, которую нетрудно изобразить на чертеже. Но то элементарный случай. На практике встречается великое множество дифференциальных уравнений, неразрешимых аналитически точно (по крайне мере, известными на сегодняшний день способами). Иными словами, как ни крути такое уравнение – проинтегрировать его не удастся. А закавыка состоит в том, что общее решение (семейство линий на плоскости) может существовать. И тогда на помощь приходят методы вычислительной математики. Встречаем нашу радость! Типовая задача формулируется следующим образом: Найти приближённо частное решение дифференциального уравнения …, удовлетворяющее начальному условию , в виде трёх (реже – четырёх-пяти) отличных от нуля членов ряда Тейлора. Искомое частное решение раскладывается в данный ряд по известной формуле: Единственное, здесь вместо буквы «эф» используется «игрек» (так уж повелось). Идея и смысл тоже знакомы: для некоторых диффуров и при некоторых условиях (не будем вдаваться в теорию) построенный степенной ряд будет сходиться к искомому частному решению . То есть, чем больше членов ряда мы рассмотрим, тем точнее график соответствующего многочлена приблизит график функции . Следует отметить, что вышесказанное применимо и к самым простым случаям. Проведём незамысловатое детское исследование на том же горшке: Пример 1 Найти приближённо частное решение дифференциального уравнения , удовлетворяющее начальному условию в виде четырёх первых отличных от нуля членов ряда Тейлора. Решение: в условиях данной задачи , поэтому общая формула Тейлора трансформируется в частный случай разложения в ряд Маклорена: Немного забегая вперёд, скажу, что в практических заданиях значительно чаще встречается именно этот, более компактный ряд. Занесите обе рабочие формулы в свой справочник. Разбираемся со значениями . Этапы решения удобно занумеровать: 0) На нулевом шаге записываем значение , которое всегда известно из условия. В тетради итоговые результаты пунктов желательно обводить в кружок, чтобы они были хорошо видны и не затерялись в решении. Мне по техническим причинам сподручнее выделять их жирным шрифтом. Кроме того, отмечаем, что данное значение не равно нулю! Ведь по условию требуется найти четыре отличных от нуля членов ряда. 1) Вычислим . Для этого в правую часть исходного уравнения вместо «игрека» подставляем известное значение : 2) Вычислим . Сначала находим вторую производную: Подставляем в правую часть найдённое в предыдущем пункте значение : В распоряжении уже три ненулевых члена разложения, нужен ещё один: 3) Находим третью производную – это производная от второй производной: Так получается, что в данном задании каждая следующая производная оказывается выраженной через предыдущую производную. Подставляем в правую часть найденное в предыдущем пункте значение : Теперь подставим найденные значения в формулу Маклорена и аккуратно проведём упрощения: Ответ: Условие рассматриваемого задания, как правило, не требует чертежа, но я построю демонстрационные графики, чтобы наглядно разъяснить сущность выполненных действий. Изобразим точное частное решение и его приближение : Очевидно, что чем больше членов ряда мы рассмотрим, тем лучше соответствующий многочлен приблизит экспоненту. Неудивительно, что в решении часто задействованы производные более высоких порядков. Кратко повторим материал: четвёртая производная – это производная от третьей производной; Помимо римских цифр, в широком обиходе и такой вариант: В собственной практике приходилось находить 10-ю производную, не случайно я так подробно воспроизвёл обозначения. Для успешного выполнения данной задачи необходимо уметь дифференцировать неявную функцию, причём дифференцировать достаточно уверенно. И, прежде чем перейти к конкретным примерам, пожалуйста, проанализируйте, понятны ли вам следующие производные: Алгоритм и технику решения начнём оттачивать с общего случая разложения в ряд Тейлора: Пример 2 Найти приближённо частное решение дифференциального уравнения , удовлетворяющее начальному условию в виде трёх первых отличных от нуля членов ряда Тейлора. Решение начинается стандартной фразой: Разложение частного решения дифференциального уравнения при начальном условии имеет вид: В данной задаче , следовательно: Теперь последовательно находим значения – до тех пор, пока не будут получены три ненулевых результата. Если повезёт, то отличны от нуля будут – это идеальный случай с минимальным количеством работы. Нарезаем пункты решения: 0) По условию . Вот и первый успех. 1) Вычислим . Сначала разрешим исходное уравнение относительно первой производной, то есть, выразим . Подставим в правую часть известные значения : Получена баранка и это не есть хорошо, поскольку нас интересуют ненулевые значения. Однако ноль – тоже результат, который не забываем обвести в кружок или выделить каким-нибудь другим способом. 2) Находим вторую производную и подставляем в правую часть известные значения : Второй «не ноль». 3) Находим – производную от второй производной: Если действия не понятны, ещё раз призываю изучить статью о дифференцировании неявной функции. Вообще, задание чем-то напоминает Сказку про Репку, когда дедка, бабка и внучка зовут на помощь жучку, кошку и т.д. И в самом деле, каждая следующая производная выражается через своих «предшественников». Подставим в правую часть известные значения : Третье ненулевое значение. Вытащили Репку. Аккуратно и внимательно подставляем «жирные» числа в нашу формулу: Ответ: искомое приближенное разложение частного решения: В рассмотренном примере попался всего один ноль на втором месте, и это не так уж плохо. В общем случае нулей может встретиться сколько угодно и где угодно. Повторюсь, их очень важно выделять наряду с ненулевыми результатами, чтобы не запутаться в подстановках на завершающем этапе. Вот, пожалуйста – бублик на самом первом месте: Пример 3 Найти приближённо частное решение дифференциального уравнения , соответствующее начальному условию , в виде трёх первых отличных от нуля членов ряда Тейлора. Примерный образец оформления задачи в конце урока. Пункты алгоритма можно и не нумеровать (оставляя, например, пустые строки между шагами), но начинающим рекомендую придерживаться строгого шаблона. Рассматриваемая задача требует повышенного внимания – если допустить ошибку на каком-либо шаге, то всё остальное тоже будет неверным! Поэтому ваша ясная голова должна работать как часы. Увы, это не интегралы или диффуры, которые надёжно решаются и в утомлённом состоянии, поскольку позволяют выполнить эффективную проверку. На практике заметно чаще встречается разложение в ряд Маклорена: Пример 4 Представить приближенно частное решение ДУ, соответствующее заданному начальному условию , в виде суммы трех первых отличных от нуля членов степенного ряда. Решение: в принципе, можно сразу записать разложение Маклорена, но оформление задачи академичнее начать с общего случая: Разложение частного решения дифференциального уравнения при начальном условии имеет вид: В данном случае , следовательно: Вперёд: 0) По условию . Ну что поделать…. Будем надеяться, что нулей встретится поменьше. 1) Вычислим . Первая производная уже готова к употреблению. Подставим значения : 2) Найдём вторую производную: И подставим в неё : Резво дело пошло! 3) Находим . Распишу очень подробно: Заметьте, что к производным применимы обычные алгебраические правила: приведение подобных слагаемых на последнем шаге и запись произведения в виде степени: (там же). Подставим в всё, что нажито непосильным трудом : Три ненулевых значения рождены. Подставляем «жирные» числа в формулу Маклорена, получая тем самым приближенное разложение частного решения: Ответ: Для самостоятельного решения: Пример 5 Представить приближенно частное решение ДУ, соответствующее заданному начальному условию , в виде суммы трех первых отличных от нуля членов степенного ряда. Примерный образец оформления в конце урока. Как видите, задача с частным разложением в ряд Маклорена оказалась даже труднее общего случая. Сложность рассматриваемого задания, как мы только что убедились, состоит не столько в самом разложении, сколько в трудностях дифференцирования. Более того, порой, приходится находить 5-6 производных (а то и больше), что повышает риск ошибки. И в завершении урока предлагаю пару задач повышенной сложности: Пример 6 Решить дифференциальное уравнение приближённо с помощью разложения частного решения в ряд Маклорена, ограничившись тремя первыми ненулевыми членами ряда Решение: перед нами диффур второго порядка, но это практически не меняет дела. По условию и нам сразу же предложено воспользоваться рядом Маклорена, чем мы не преминем воспользоваться. Запишем знакомое разложение, прихватив на всякий пожарный побольше слагаемых: Алгоритм работает точно так же: 0) – по условию. 1) – по условию. 2) Разрешим исходное уравнение относительно второй производной: . И подставим : Первое ненулевое значение Щёлкаем производные и выполняем подстановки: 3) Подставим и : 4) Подставим : Второе ненулевое значение. 5) – по ходу дела приводим подобные производные. Подставим : 6) Подставим : Наконец-то. Впрочем, бывает и хуже. Таким образом, приближенное разложение искомого частного решения: Ответ: Миниатюра для самостоятельного решения: Пример 7 Найти три отличных от нуля члена разложения в ряд Маклорена частного решения дифференциального уравнения второго порядка при начальных условиях . Я хочу, чтобы все читатели решили это задание. Ведь курс математического анализа потихоньку заканчивается…. пройдут годы, но когда-нибудь каждого из вас посетит непреодолимое желание что-нибудь продифференцировать. Поэтому не упускайте редкую возможность начать прямо сейчас =) Решения и ответы: Пример 3: Решение: разложение частного решения ДУ при начальном условии имеет вид: . Пример 5: Решение: разложение частного решения ДУ при начальном условии имеет вид: . Пример 7: Решение: используем разложение Маклорена: В исходное уравнение подставим : Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |