Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Полярные координатыПомимо аффинной системы координат и её популярного частного случая – прямоугольной (декартовой) системы, существуют и другие подходы к построению координатной сетки плоскости и пространства. В частности, широкое распространение получила полярная система координат, которая невероятно удобна для решения целого спектра практических задач. И через считанные минуты, не успевши опомниться, вы уже будете уверенно ориентироваться в полярных координатах! Чтобы определить полярную систему координат на плоскости, достаточно зафиксировать начало координат и задать единичный координатный вектор . Точка называется полюсом, а луч , сонаправленный с вектором – полярной осью. Графический шаблон – проще некуда, одна точка, один вектор, одна линия: А теперь сама мякотка: Любая отличная от начала координат точка плоскости однозначно определяется своим расстоянием от полюса и ориентированным углом между полярной осью и отрезком : Число называют полярным радиусом точки или первой полярной координатой. Расстояние не может быть отрицательным, поэтому полярный радиус любой точки . Первую полярную координату также обозначают греческой буквой («ро»), но я привык к латинскому варианту, и в дальнейшем буду использовать его. Число называют полярным углом данной точки или второй полярной координатой. Полярный угол стандартно изменяется в пределах (так называемые главные значения угла). Однако вполне допустимо использовать диапазон , а в некоторых случаях и вовсе возникает прямая необходимость рассмотреть все значения угла от нуля до «плюс бесконечности». Рекомендую, кстати, привыкнуть к радианной мере угла, поскольку оперировать градусами в высшей математике считается не комильфо. Пару называют полярными координатами точки . Из легко найти и их конкретные значения. Тангенс острого угла прямоугольного треугольника – есть отношение противолежащего катета к прилежащему катету: , следовательно, сам угол: . По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов: , значит, полярный радиус: Таким образом, . Один пингвин хорошо, а стая – лучше : Но недостаток этих «традиционно» ориентированных углов состоит в том, что они слишком далеко (более чем, на 180 градусов) «закручены» против часовой стрелки. Предчувствую вопрос: «почему недостаток и зачем вообще нужны какие-то отрицательные углы?» В математике ценятся самые короткие и рациональные пути. Ну а уж с точки зрения физики направление вращения зачастую имеет принципиальное значение – каждый из нас пытался открыть дверь, дёргая ручку не в ту сторону =) Порядок и техника построения точек в полярных координатахКрасивые картинки красивы, однако построение в полярной системе координат – занятие достаточно кропотливое. Трудностей не возникает с точками, у которых полярные углы составляют , в нашем примере это точки ; особых хлопот также не доставляют значения, кратные 45 градусам: . Но как правильно и грамотно построить, скажем, точку ? Потребуется клетчатый листок бумаги, карандаш и следующие чертёжные инструменты: линейка, циркуль, транспортир. В крайнем случае, можно обойтись одной линейкой, а то… и вовсе без неё! Читайте дальше и вы получите ещё одно доказательство, что эта страна непобедима =) Пример 1 Построить точку в полярной системе координат. Строим! Прежде всего, нужно выяснить градусную меру угла . Если угол малознаком или вас есть сомнения, то всегда лучше воспользоваться таблицей либо общей формулой перевода радианов в градусы. Итак, наш угол составляет (или ). Начертим полярную систему координат (см. начало урока) и возьмём в руки транспортир. Обладателям круглого инструмента не составит труда отметить 240 градусов, но с большой вероятностью у вас на руках будет полукруглая версия девайса. Проблема полного отсутствия транспортира при наличии принтера и ножниц решается рукоделием. Есть два пути: перевернуть листок и отметить 120 градусов, либо «прикрутить» пол оборота и рассмотреть противоположный угол . Выберем взрослый способ и сделаем отметку в 60 градусов: Проводим карандашом тонкую прямую, проходящую через полюс и сделанную отметку: Взаимосвязь прямоугольной и полярной системы координатОчевидным образом присоединим к полярной системе координат «школьную» систему и изобразим на чертеже точку : Такое присоединение всегда полезно держать в голове, когда выполняете чертёж в полярных координатах. Хотя, волей-неволей оно напрашивается и без лишнего намёка. Установим взаимосвязь полярных и декартовых координат на примере конкретной точки . Рассмотрим прямоугольный треугольник , в котором гипотенуза равна полярному радиусу: , а катеты – «иксовой» и «игрековой» координатам точки в декартовой системе координат: . Синус острого угла – есть отношение противолежащего катета к гипотенузе: Косинус острого угла – есть отношение прилежащего катета к гипотенузе: Заодно повторили определения синуса, косинуса (и чуть ранее тангенса) из программы 9 класса общеобразовательной школы. Пожалуйста, занесите в свой справочник рабочие формулы , выражающие декартовы координаты точки через её полярные координаты – с ними нам придётся столкнуться ещё неоднократно, и в следующий раз прямо сейчас =) Найдём координаты точки в прямоугольной системе координат: Таким образом: Полученные формулы открывают ещё одну лазейку в задаче построения, когда можно обойтись вообще без транспортира: сначала находим декартовы координаты точки (понятно, на черновике), затем мысленно находим нужное место на чертеже и отмечаем данную точку. На заключительном этапе проводим тонкую прямую, которая проходит через построенную точку и полюс. В результате получается, что угол якобы был отмерян транспортиром. Напомнило мне всё это известный анекдот, в котором находчивые лётчики прокладывали курс по пачке Беломора =) Хотя, шутки шутками, а анекдот не так далёк от реальности, помнится, на одном из внутренних рейсов по РФ в лайнере отказали все навигационные приборы, и экипаж успешно посадил борт при помощи обычного стакана с водой, который показывал угол наклона самолёта относительно земли. А лётная полоса – вот она, из лобового стекла виднА. Используя процитированную в начале урока теорему Пифагора, легко получить и обратные формулы: , следовательно: Сам угол «фи» стандартно выражается через арктангенс – абсолютно так же как и аргумент комплексного числа со всеми его заморочками. Вторую группу формул также целесообразно поместить в свой справочный багаж. После подробного разбора полётов с отдельно взятыми точками перейдём к закономерному продолжению темы: Уравнение линии в полярных координатахПо существу, уравнение линии в полярной системе координат представляет собой функцию полярного радиуса от полярного угла (аргумента). При этом полярный угол учитывается в радианах (!) и непрерывно принимает значения от до (иногда следует рассмотреть до бесконечности, или же в ряде задач для удобства от до ). Каждому значению угла «фи», которое входит в область определения функции , соответствует единственное значение полярного радиуса. Полярную функцию можно сравнить со своеобразным радаром – когда луч света, исходящий из полюса, вращается против часовой стрелки и «обнаруживает» (прорисовывает) линию. Дежурным примером полярной кривой является Архимедова спираль . На следующем рисунке изображен её первый виток – когда полярный радиус вслед за полярным углом принимает значения от 0 до : В первом же примере мы сталкиваемся и с понятием области определения полярной функции: поскольку полярный радиус неотрицателен , то отрицательные углы здесь рассматривать нельзя. ! Примечание: в ряде случаев принято использовать обобщённые полярные координаты, где радиус может быть отрицательным, и такой подход мы вкратце изучим чуть позже Кроме спирали Архимеда, есть множество других известных кривых, но искусством, как говорится, сыт не будешь, поэтому я подобрал примеры, которые очень часто встречаются в реальных практических заданиях. Сначала простейшие уравнения и простейшие линии: Уравнение вида задаёт исходящий из полюса луч. Действительно, вдумайтесь, если значение угла всегда (каким бы ни было «эр») постоянно, то какая это линия? Примечание: в обобщённой полярной системе координат данное уравнение задаёт прямую, проходящую через полюс Уравнение вида определяет… догадайтесь с первого раза – если для любого угла «фи» радиус остаётся постоянным? Фактически это определение окружности с центром в полюсе радиуса . Например, . Для наглядности найдём уравнение данной линии в прямоугольной системе координат. Используя полученную в предыдущем параграфе формулу , проведём замену: Возведём обе части в квадрат: – уравнение окружности с центром в начале координат радиуса 2, что и требовалось проверить. Со времён создания и релиза статьи о линейной зависимости и линейной независимости векторов я получил несколько писем от посетителей сайта, которые задавали вопрос в духе: «вот есть простая и удобная прямоугольная система координат, зачём нужен ещё какой-то косоугольный аффинный случай?». Ответ прост: математика стремится объять всё и вся! Кроме того, в той или иной ситуации немаловажно удобство – как видите, с окружностью значительно выгоднее работать именно в полярных координатах по причине предельной простоты уравнения . А иногда математическая модель предвосхищает научные открытия. Так, в своё время ректор Казанского университета Н.И. Лобачевский строго доказал, через произвольную точку плоскости можно провести бесконечно много прямых, параллельных данной. В результате он был ошельмован всем научным миром, но… опровергнуть данный факт никто не смог. Только спустя доброе столетие астрономы выяснили, что свет в космосе распространяется по кривым траекториям, где и начинает работать неевклидова геометрия Лобачевского, формально разработанная им задолго до этого открытия. Предполагается, что это свойство самого пространства, кривизна которого нам незаметна ввиду малых (по астрономическим меркам) расстояний. Рассмотрим более содержательные задачи на построение: Пример 2 Построить линию Решение: в первую очередь найдём область определения. Так как полярный радиус неотрицателен, то должно выполняться неравенство . Можно вспомнить школьные правила решения тригонометрических неравенств, но в простых случаях как этот, я советую более быстрый и наглядный метод решения: Представьте график косинуса. Если он ещё не успел отложиться в памяти, то найдите его на странице Графики элементарных функций. О чём нам сообщает неравенство ? Оно сообщает нам о том, что график косинуса должен располагаться не ниже оси абсцисс. А это происходит на отрезке . И, соответственно, интервал не подходит. Таким образом, область определения нашей функции: , то есть график расположен справа от полюса (по терминологии декартовой системы – в правой полуплоскости). В полярных координатах часто бывает смутное представление о том, какую линию определяет то или иное уравнение, поэтому чтобы её построить, необходимо найти принадлежащие ей точки – и чем больше, тем лучше. Обычно ограничиваются десятком-другим (а то и меньшим количеством). Проще всего, конечно же, взять табличные значения угла. Для бОльшей ясности к отрицательным значениям я буду «прикручивать» один оборот: В силу чётности косинуса соответствующие положительные значения можно заново не считать: Изобразим полярную систему координат и отложим найденные точки, при этом одинаковые значения «эр» удобно откладывать за один раз, делая парные засечки циркулем по рассмотренной выше технологии: Выделяя полный квадрат, приводим уравнение линии к узнаваемому виду: Коль скоро по условию требовалось просто выполнить построение и всё, плавно соединяем найденные точки линией: Почему мы не рассмотрели значения угла вне промежутка ? Ответ прост: нет смысла. Ввиду периодичности функции нас ждёт бесконечный бег по построенной окружности. Несложно провести нехитрый анализ и прийти к выводу, что уравнение вида задаёт окружность диаметра с центром в точке . Образно говоря, все такие окружности «сидят» на полярной оси и обязательно проходят через полюс. Если же , то весёлая компания перекочует налево – на продолжение полярной оси (подумайте, почему). Похожая задача для самостоятельного решения: Пример 3 Построить линию и найти её уравнение в прямоугольной системе координат. Систематизируем порядок решения задачи: В первую очередь находим область определения функции, для этого удобно посмотреть на синусоиду, чтобы сразу же понять, где синус неотрицателен. На втором шаге рассчитываем полярные координаты точек, используя табличные значения углов; проанализируйте, нельзя ли сократить количество вычислений? На третьем шаге откладываем точки в полярной системе координат и аккуратно соединяем их линией. И, наконец, находим уравнение линии в декартовой системе координат. Примерный образец решения в конце урока. Общий алгоритм и технику построения в полярных координатах мы детализируем Полярная розаСовершенно верно, речь пойдёт о цветке с лепестками: Пример 4 Построить линии, заданные уравнениями в полярных координатах а) Существует два подхода к построению полярной розы. Сначала пойдём по накатанной колее, считая, что полярный радиус не может быть отрицательным: Решение: а) Найдём область определения функции: Такое тригонометрическое неравенство тоже нетрудно решить графически: из материалов статьи Геометрические преобразования графиков известно, что если аргумент функции удвоить, то её график сожмётся к оси ординат в 2 раза. Пожалуйста, найдите график функции в первом же примере указанного урока. Где данная синусоида находится выше оси абсцисс? На интервалах . Следовательно, неравенству удовлетворяют соответствующие отрезки, и область определения нашей функции: . Вообще говоря, решение рассматриваемых неравенств представляет собой объединение бесконечного количества отрезков, но, повторюсь, нас интересует только один период. Возможно, некоторым читателям более лёгким покажется аналитический способ нахождения области определения, условно назову его «нарезка круглого пирога». Резать будем на равные части и, прежде всего, найдём границы первого куска. Рассуждаем следующим образом: синус неотрицателен, когда его аргумент находится в пределах от 0 до рад. включительно. В нашем примере: . Разделив все части двойного неравенства на 2, получаем искомый промежуток: Теперь начинаем последовательно «нарезать равные куски по 90 градусов» против часовой стрелки: – найденный отрезок , понятно, входит в область определения; – следующий интервал – не входит; – следующий отрезок – входит; – и, наконец, интервал – не входит. Прямо, как по ромашке – «любит, не любит, любит, не любит» =) С тем отличием, что тут не гадание. Да, прямо какая-то любовь по-китайски получается…. Итак, и линия представляет собой розу с двумя одинаковыми лепестками. Чертёж вполне допустимо выполнить схематически, однако крайне желательно правильно найти и отметить вершины лепестков. Вершинам соответствуют середины отрезков области определения, которые в данном примере имеют очевидные угловые координаты . При этом длины лепестков составляют: Вот закономерный результат заботливого садовника: б) Построим линию, заданную уравнением . Очевидно, что длина лепестка этой розы тоже равна двум, но, прежде всего, нас интересует область определения. Применим аналитический метод «нарезки»: синус неотрицателен, когда его аргумент находится в пределах от нуля до «пи» включительно, в данном случае: . Делим все части неравенства на 3 и получаем первый промежуток:
Далее начинаем «нарезку пирога кускам» по рад. (60 градусов): Процесс успешно завершён на отметке 360 градусов. Таким образом, область определения: . Проводимые действия полностью либо частично несложно осуществлять и мысленно. Построение. Если в предыдущем пункте всё благополучно обошлось прямыми углами и углами в 45 градусов, то здесь придётся немного повозиться. Найдём вершины лепестков. Их длина была видна с самого начала задания, осталось вычислить угловые координаты, которые равны серединам отрезков области определения: Обратите внимание, что между вершинами лепестков должны обязательно получиться равные промежутки, в данном случае 120 градусов. Чертёж желательно разметить на 60-градусные секторы (отграничены зелёными линиями) и провести направления вершин лепестков (серые линии). Сами вершины удобно наметить с помощью циркуля – единожды отмерять расстояние в 2 единицы и нанести три засечки на прочерченных направлениях в 30, 150 и 270 градусов: Сформулируем общую формулу: уравнение вида , – натуральное число), задаёт полярную -лепестковую розу, длина лепестка которой равна . Например, уравнение задаёт четырёхлистник с длиной лепестка в 5 единиц, уравнение – 5-лепестковую розу с длиной лепестка в 3 ед. и т. д. О втором подходе я хотел вообще умолчать, однако не могу пройти мимо – уж слишком он распространён. Суть состоит в том, что полярная роза часто рассматривается в обобщённых полярных координатах, где полярный радиус может быть отрицательным. Вопрос области определения отпадает, но появляются другие приколы. Во-первых, разберёмся, как строить точки с отрицательным значением «эр». Если , то нужно мысленно найти точку с таким же углом, но радиуса и отобразить её симметрично относительно полюса. Вернёмся к первой полярной розе и рассмотрим интервал , на котором полярный радиус отрицателен. Как, например, изобразить точку ? Мысленно находим точку (левый верхний сектор) и отображаем её симметрично относительно полюса в точку . Таким образом, когда угол принимает значения из интервала , то прорисовывается ещё один лепесток в правом нижнем секторе: Сформулируем правило розы для обобщенной системы координат: уравнение вида , – натуральное) задаёт полярную розу с длиной лепестка , при этом: 1) если - чётное, то роза имеет ровно лепестков; Например, роза имеет 8 лепестков, роза – пять лепестков, роза – 12 лепестков, роза – 7 лепестков и т. д. А почему закономерность столь необычна, я только что проиллюстрировал геометрически. Какой способ выбрать, решать вам, …но я бы не особо рекомендовал использовать обобщенные полярные координаты – у преподавателя могут появиться дополнительные вопросы на счет отрицательных значений полярного радиуса (а то и вообще всё будет забраковано по этой причине) Короткая задача для самостоятельного решения: Пример 5 Построить линии, заданные уравнением в полярных координатах а) Сформулировать общее правило о количестве и длине лепестков полярной розы вида , – натуральное) В моём образце решение проведено 1-м способом. Повторим порядок действий: – Сначала находим область определения. При этом для лучшего понимания своих действий рекомендую соотносить аналитический способ «нарезки» с графической интерпретацией. По материалам урока Геометрические преобразования графиков выясните, как выглядят, и при необходимости начертите графики функций . – Находим угловые координаты вершин лепестков – они расположены ровно посередине промежутков области определения. – Выполняем чертёж. Пойдёт схематическая версия, однако желательно разметить найденные секторы и угловые направления вершин лепестков (в случае необходимости – с помощью транспортира). Вершины удобно засекать циркулем, предварительно установив раствор, равный длине лепестка. Существуют более солидные и общие формулы окружности, полярной розы и желающие могут с ними ознакомиться в других источниках информации. Я лишь ограничился практически значимыми (с моей точки зрения) примерами. Предлагаю перейти ко 2-й части занятия под названием Как построить линию в полярной системе координат?, где мы продолжим рассматривать типовые задачи, и усовершенствуем свои навыки. Решения и ответы: Пример 3. Решение: найдём область определения: Дополнительная информация: уравнение вида задаёт окружность диаметра с центром в точке . Пример 5. Решение: Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |